[1] 邓秀芹,付金华,姚泾利,庞锦莲,孙勃. 2011. 鄂尔多斯盆地中及上三叠统延长组沉积相与油气勘探的突破. 古地理学报, 13(4): 443-455. [Deng X Q,Fu J H,Yao J L,Pang J L,Sun B.2011. Sedimentary facies of Yanchang Formation of Middle and Upper Triassic in Ordos Basin and the breakthrough of oil and gas exploration. Journal of Palaeogeography(Chinese Edition), 13(4): 443-455] [2] 董杰,胡作维,袁效奇,贺静,李云,王玉龙. 2017. 鄂尔多斯盆地南缘长7油层组碳酸盐结核的特征及石油地质意义. 成都理工大学学报(自然科学版), 44(5): 553-564. [Dong J,Hu Z W,Yuan X Q,He J,Li Y,Wang Y L.2017. Characteristics and petroleum geological significance of carbonate nodules of Chang7 formation in the southern margin of Ordos Basin. Journal of Chengdu University of Technology(Science &Technology Edition), 44(5): 553-564] [3] 李向军,罗静兰,罗晓容,王香增,姜呈馥,雷裕红,高潮,尹景涛. 2017. 鄂尔多斯盆地长7段泥页岩系孔隙特征及其演化规律. 地质科技情报, 36(4): 19-28. [Li X J,Luo J L,Luo X R,Wang X Z,Jiang C F,Lei Y H,Gao C,Yin J T.2017. Pore characteristics and evolution of shale system of Chang 7 member in Ordos Basin. Geological Science and Technology Information, 36(4): 19-28] [4] 秦艳,张文正,彭平安,周振菊. 2009. 鄂尔多斯盆地延长组长7段富铀烃源岩的铀赋存状态与富集机理. 岩石学报, 25(10): 2469-2476. [Qin Y,Zhang W Z,Peng P A,Zhou Z J.2009. Uranium occurrence and enrichment mechanism of uranium-rich source rocks in Yanchang Formation of Ordos Basin. Acta Petrologica Sinica, 25(10): 2469-2476] [5] 邱欣卫,刘池洋,李元昊,王光周,王建强. 2009. 鄂尔多斯盆地延长组凝灰岩夹层展布特征及其地质意义. 沉积学报, 27(6): 1138-1146. [Qiu X W,Liu C Y,Li Y H,Wang G Z,Wang J Q.2009. Distribution and geological significance of tuff intercalation in Yanchang Formation,Ordos Basin. Acta Sedimentologica Sinica, 27(6): 1138-1146] [6] 邱欣卫,刘池洋,毛光周,邓煜,王飞飞. 2010. 鄂尔多斯盆地上三叠统延长组凝灰岩夹层Th 元素的富集特征. 地质通报, 29(8): 1185-1191. [Qiu X W, Liu C Y,Mao G Z,Deng Y,Wang F F.2010. Enrichment characteristics of Th elements in tuff intercalation of Yanchang Formation of Upper Triassic in Ordos Basin. Geological Bulletin of China, 29(8): 1185-1191] [7] 邱欣卫,刘池洋,毛光周,吴柏林. 2011. 鄂尔多斯盆地延长组火山灰沉积物岩石地球化学特征. 地球科学, 36(1): 139-150. [Qiu X W,Liu C Y,Mao G Z,Wu B L.2011. Petrogeochemical characteristics of volcanic ash sediments in Yanchang Formation,Ordos Basin. Earth Science, 36(1): 139-150] [8] 孙宁亮,钟建华,刘绍光,田东恩,刘闯,曹梦春,杨冠群,郝兵. 2017. 鄂尔多斯盆地南部延长组重力流致密储集层成岩作用及物性演化. 地球科学, 42(10): 1802-1816. [Sun N L,Zhong J H,Liu S G,Tian D E,Liu C,Cao M C,Yang G Q,Hao B.2017. Diagenesis and physical evolution of gravity flow tight reservoir in Yanchang Formation,southern Ordos Basin. Earth Science, 42(10): 1802-1816] [9] 王多云,辛补社,杨华,付金华,姚泾利,张瑜. 2014. 鄂尔多斯盆地延长组长7底部凝灰岩锆石SHRIMP U-Pb 年龄及地质意义. 中国科学: 地球科学, 44(10): 2160-2171. [Wang D Y,Xin B S,Yang H,Fu J H,Yao J L,Zhang Y.2014. Shrimp U-Pb age of zircon from tuff at the bottom of Chang 7 of Yanchang Formation,Ordos Basin,and its geological significance. Scientia Sinica Terrae, 44(10): 2160-2171] [10] 王建强,刘池洋,李行,吴桐桐,吴经理. 2017. 鄂尔多斯盆地南部延长组长7段凝灰岩形成时代、物质来源及其意义. 沉积学报, 35(4): 691-704. [Wang J Q,Liu C Y,Li X,Wu T T,Wu J L.2017. Formation age,material source and its significance of tuff in member 7 of Yanchang Formation in southern Ordos Basin. Acta Sedimentologica Sinica, 35(4): 691-704] [11] 杨华,付金华,袁效奇. 2016. 鄂尔多斯盆地南缘地质剖面图集. 北京: 石油工业出版社. [Yang H,Fu J H,Yuan X Q.2016. Geological Profile Atlas of the Southern Margin of Ordos Basin. Beijing: Petroleum Industry Press] [12] 杨华,张文正. 2005,论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用: 地质地球化学特征. 地球化学, 34(2): 147-154. [Yang H,Zhang W Z.2005. Discussion on the leading role of high quality source rock of Chang7 member in Ordos Basin in accumulation of low permeability oil and gas reservoir: Geological and geochemical characteristics. Geochimica, 34(2): 147-154] [13] 杨华,窦伟坦,刘显阳,张才利. 2010. 鄂尔多斯盆地三叠系延长组长7沉积相分析. 沉积学报, 28(2): 254-263. [Yang H,Dou W T,Liu X Y,Zhang C L.2010. Sedimentary facies analysis of Chang 7 of Triassic Yanchang Formation in Ordos Basin. Acta Sedimentologica Sinica, 28(2): 254-263] [14] 杨智,付金华,郭秋麟,林森虎,陈宁生,潘松圻,李士祥. 2017. 鄂尔多斯盆地三叠系延长组陆相致密油发现、特征及潜力. 中国石油勘探, 22(6): 9-15. [Yang Z,Fu J H,Guo Q L,Lin S H,Chen N S,Pan S Q,Li S X.2017. Discovery,characteristics and potential of continental dense oil in the Yanchang Formation of Triassic,Ordos Basin. China Petroleum Exploration, 22(6): 9-15] [15] 张本浩,吴柏林,刘池洋,邱欣卫. 2011. 鄂尔多斯盆地延长组长7富铀烃源岩铀的赋存状态. 西北地质, 44(2): 124-132. [Zhang B H,Wu B L,Liu C Y,Qiu X W.2011. The occurrence of uranium in the uranium rich source rocks of Chang 7 of Yanchang Formation in the Ordos Basin. Northwestern Geology, 44(2): 124-132] [16] 张辉,彭平安,张文正. 2014. 鄂尔多斯盆地延长组长7段凝灰岩锆石U-Pb年龄、Hf同位素组成特征及其地质意义. 岩石学报, 30(2): 565-575. [Zhang H,Peng P A,Zhang W Z.2014. Isotopic characteristics of zircon U-Pb age and its geological significance of tuff from Member 7 of Yanchang Formation in Ordos Basin. Acta Petrologica Sinica, 30(2): 565-575] [17] 张文正,杨华,李剑峰,马军. 2006. 论鄂尔多斯盆地长7优质油源岩在低渗透油气成藏富集中的主导作用: 强生排烃特征及机理分析. 石油勘探与开发, 33(3): 289-293. [Zhang W Z,Yang H,Li J F,Ma J.2006. On the leading role of Chang7 high quality source rocks in the accumulation of low permeability oil and gas reservoirs in Ordos Basin: Johnson hydrocarbon expulsion characteristics and mechanism analysis. Petroleum Exploration and Development, 33(3): 289-293] [18] 张文正,杨华,杨奕华,孔庆芬,吴凯. 2008. 鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境. 地球化学, 37(1): 59-64. [Zhang W Z,Yang H,Yang Y H,Kong Q F,Wu K.2008. Petrology,elemental geochemistry and developmental environment of Chang7 high quality source rocks in Ordos Basin. Geochimica, 37(1): 59-64] [19] 张文正,杨华,侯林慧,刘飞. 2009. 鄂尔多斯盆地延长组不同烃源岩17α(H)-重排藿烷的分布及其地质意义. 中国科学: 地球科学, 39(10): 1438-1445. [Zhang W Z,Yang H,Hou L H,Liu F.2009. The distribution and geological significance of 17α-HI-rearrangement of different hydrocarbon source rocks in Yanchang Formation,Ordos Basin,China. Science China: Earth Sciences, 39(10): 1438-1445] [20] 张文正,杨华,解丽琴,杨奕华. 2010. 湖底热水活动及其对优质烃源岩发育的影响: 以鄂尔多斯盆地长7烃源岩为例. 石油勘探与开发, 37(4): 424-429. [Zhang W Z,Yang H,Xie L Q,Yang Y H.2010. Hydrothermal activity under the lake and its influence on the development of high quality source rocks: A case study of Chang7 source rock in Ordos Basin. Petroleum Exploration and Development, 37(4): 424-429] [21] 张文正,杨华,解丽琴,解古巍. 2011. 鄂尔多斯盆地延长组长7优质烃源岩中超微化石的发现及意义. 古生物学报, 50(1): 109-117. [Zhang W Z,Yang H,Xie L Q,Xie G W.2011. Discovery and significance of ultrafossils from high quality source rocks of Yanchang 7 in Ordos Basin. Acta Palaeontologica Sinica, 50(1): 109-117] [22] 张文正,杨华,杨伟伟,吴凯,刘飞. 2015. 鄂尔多斯盆地延长组长7湖相页岩油地质特征评价. 地球化学, 44(5): 505-515. [Zhang W Z,Yang H,Yang W W,Wu K,Liu F.2015. Evaluation of geological characteristics of lacustrine shale oil in Chang 7 of Yanchang Formation,Ordos Basin. Geochimica, 44(5): 505-515] [23] 张烨毓,周文,唐瑜,邓虎成,彭先锋,陈文玲,王勃力,肖睿. 2013. 鄂尔多斯盆地三叠系长7油层组页岩储集层特征. 成都理工大学学报(自然科学版), 40(6): 671-676. [Zhang Y Y,Zhou W,Tang Y,Deng H C,Peng X F,Chen W L,Wang B L,Xiao R.2013. Shale reservoir characteristics of Chang 7 Formation of Triassic in Ordos Basin.Journal of Chengdu University of Technology(Science &Technology Edition), 40(6): 671-676] [24] 张忠义,陈世加,杨华,付金华,姚泾利,喻建,杨智,张文正,邓秀芹. 2016. 鄂尔多斯盆地三叠系长7段致密油成藏机理. 石油勘探与开发, 43(4): 590-599. [Zhang Z Y,Chen S J,Yang H,Fu J H,Yao J L,Yu J,Yang Z,Zhang W Z,Deng X Q.2016. Formation mechanism of dense oil in Chang 7 section of Triassic system in Ordos Basin. Petroleum Exploration and Development, 43(4): 590-599] [25] Allison P A,Pye K.1994. Early diagenetic mineralization and fossil preservation in modern carbonate concretions. Palaios, 9: 561-575. [26] Bojanowski M J,Barczuk A,Wetzel A.2014. Deep-burial alteration of early-diagenetic carbonate concretions formed in Paleozoic deep-marine greywackes and mudstones(Bardo Unit,Sudetes Mountains,Poland). Sedimentology, 61: 1211-1239. [27] Coleman M L.1993. Microbial processes: Controls on the shape and composition of carbonate concretions. Marine Geology, 11: 127-140. [28] Coniglio M,Cameron J S.1990. Early diagenesis in a potential oil shale:Evidence from calcite concretions in the Upper Devonian Kettle Point Formation,southwestern Ontario. Bulletin of Canadian Petroleum Geology, 38: 64-77. [29] Dale A,John C M,Mozley P S,Smalley P C,Muggeridge A H.2014. Time-capsule concretions: Unlocking burial diagenetic processes in the Mancos shale using carbonate clumped isotopes. Earth and Planetary Science Letters, 394: 30-37. [30] Feistner K.1989. Petrographic examination and re-interpretation of concretionary carbonate horizons from the Kimmeridge clay,Dorset. Journal of the Geological Society, 146: 345-350. [31] Fisher Q,Raiswell R,Marshall J.1998. Siderite concretions from nonmarine shales(Westphalian A)of the Pennines,England: Controls on their growth and composition. Journal of Sedimentary Research, 68: 1034-1045. [32] Hendry J P,Pearson M J,Trewin N H,Fallick A E.2006. Jurassic septarian concretions from NW Scotland record interdependent bacterial,physical and chemical processes of marine mudrock diagenesis. Sedimentology, 53: 537-565. [33] Huggett J M.1994. Diagenesis of mudrocks and concretions from the London Clay Formation in the London Basin. Clay Minerals, 29: 693-707. [34] Klein J,Mozley P,Campell A,Cole R.1999. Spatial distribution of carbon and oxygen isotopes in laterally extensive carbonate-cemented layers: Implications for mode of growth and subsurface identification. Journal of Sedimentary Research, 69: 184-191. [35] Lash G G,Blood D.2004. Geochemical and textural evidence for early(shallow)diagenetic growth of stratigraphically confined carbonate concretions,Upper Devonian Rhinestreet black shale,western New York. Chemical Geology, 206: 407-424. [36] Loyd S J,Berelson W M,Lyons T W,Hammond D E, Corsetti F A.2012. Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate. Geochimica et Cosmochimica Acta, 78: 77-98. [37] Loyd S J,Dickson J,Boles J R,Tripati A K.2014. Clumped-isotope constraints on cement paragenesis in septarian concretions. Journal of Sedimentary Research, 84: 1170-1184. [38] Mavotchy N O,El Albani A,Trentesaux A,Fontaine C,Pierson-Wickmann A C,Boulvais P,Riboulleau A,Pemba L N,Pambo F,Gauthier-Lafaye F.2016. The role of the early diagenetic dolomitic concretions in the preservation of the 2.1-Ga paleoenvironmental signal: The Paleoproterozoic of the Franceville Basin,Gabon. Comptes Rendus Geoscience, 348: 609-618. [39] McBride E F,Picard M D,Milliken K L.2003. Calcite-cemented concretions in Cretaceous sandstone,Wyoming and Utah,U.S.A. Journal of Sedimentary Research, 73: 462-483. [40] Mercedes-Martína R,Rogersona M R,Brasier A T,Vonhof H B,Prior T J,Fellows S M,Reijmer J J G,Billing I,Pedley H M.2016. Growing spherulitic calcite grains in saline,hyperalkaline lakes: Experimental evaluation of the effects of Mg-clays and organic acids. Sedimentary Geology, 335: 93-102. [41] Mozley P S.1996. The internal structure of carbonate concretions in mudrocks: A critical evaluation of the conventional concentric model of concretion growth. Sedimentary Geology, 103: 85-91. [42] Raiswell R.1971. The growth of Cambrian and Liassic concretions. Sedimentology, 17: 147-171. [43] Raiswell R.1988. Evidence for surface reaction-controlled growth of carbonate concretions in shales. Sedimentology, 35: 571-575. [44] Raiswell R,White N J M.1978. Spatial aspects of concretionary growth in the upper Lias of Northeast England. Sedimentary Geology, 20: 291-300. [45] Raiswell R,Fisher Q.2000. Mudrock-hosted carbonate concretions: A review of growth mechanisms and their influence on chemical and isotopic composition. Journal of the Geological Society, 157: 239-251. [46] Selles-Martinez J.1996. Concretion morphology,classification and genesis. Earth-Science Reviews, 41: 177-210. [47] Wanas H A.2008. Calcite-cemented concretions in shallow marine and fluvial sandstones of the Birket Qarun Formation(Late Eocene),El-Faiyum depression,Egypt: Field,petrographic and geochemical studies: Implications for formation conditions. Sedimentary Geology, 212: 40-48. [48] Weeks L G.1957. Origin of carbonate concretions in shales,Magdalena Valley,Columbia. Geological Society of American Bulletin, 68: 95-102. |