[1] 陈世悦,张顺,刘惠民,鄢继华. 2017. 湖相深水细粒物质的混合沉积作用探讨. 古地理学报, 19(2): 271-284. [Chen S Y,Zhang S,Liu H M,Yan J H.2017. Discussion on mixing of fine-grained sediments in lacustrine deep water. Journal of Palaeogeography(Chinese Edition), 19(2): 271-284] [2] 崔俊,毛建英,陈登钱,施奇,李雅楠,夏晓敏. 2022. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征. 岩性油气藏, 34(2): 45-53. [Cui J,Mao J Y,Chen D Q,Shi Q,Li Y N,Xia X M.2022. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin. Lithologic Reservoirs, 34(2): 45-53] [3] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 2020. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件. 地球科学进展, 35(1): 52-69. [Du J M,Long P Y,Yang P,Ding Q,Hu X Y,Li W,Bai Y,Sheng J.2020. Characteristics of carbonate reservoir and its forming conditions in continental lake basin of China. Advances in Earth Science, 35(1): 52-69] [4] 冯有良,杨智,张洪,张天舒,李攀,侯鸣秋,蒋文琦,王小妮,朱吉昌,李嘉蕊. 2023. 咸化湖盆细粒重力流沉积特征及其页岩油勘探意义: 以准噶尔盆地玛湖凹陷风城组为例. 地质学报, 97(3): 839-863. [Feng Y L,Yang Z,Zhang H,Zhang T S,Li P,Hou M Q,Jiang W Q,Wang X N,Zhu J C,Li J R.2023. Fine-grained gravity flow sedimentary features and their petroleum significance within saline lacustrine basins: a case study of the Fengcheng Formation in Mahu depression,Junggar Basin,China. Acta Geologica Sinica, 97(3): 839-863] [5] 付锁堂,马达德,郭召杰,程丰. 2015. 柴达木走滑叠合盆地及其控油气作用. 石油勘探与开发, 42(6): 712-722. [Fu S T,Ma D D,Guo Z J,Cheng F.2015. Strike-slip superimposed Qaidam Basin and its control on oil and gas accumulation,NW China. Petroleum Exploration and Development, 42(6): 712-722] [6] 郭荣涛,张永庶,陈晓冬,张庆辉,王鹏,崔俊,姜营海,李亚峰,蒋启财,刘波. 2019. 柴达木盆地英西地区下干柴沟组上段高频旋回与古地貌特征. 沉积学报, 37(4): 812-824. [Guo R T,Zhang Y S,Chen X D,Zhang Q H,Wang P,Cui J,Jiang Y H,Li Y F,Jiang Q C,Liu B.2019. High-frequency cycles and paleogeomorphic features of the upper member of the lower Ganchaigou Formation in the Yingxi area,Qaidam Basin. Acta Sedimentologica Sinica, 37(4): 812-824] [7] 纪友亮,马达德,薛建勤,王鹏,吴颜雄,曾力,金力. 2017. 柴达木盆地西部新生界陆相湖盆碳酸盐岩沉积环境与沉积模式. 古地理学报, 19(5): 757-772. [Ji Y L,Ma D D,Xue J Q,Wang P,Wu Y X,Zeng L,Jin L.2017. Sedimentary environments and sedimentary model of carbonate rocks in the Cenozoic lacustrine basin,western Qaidam Basin. Journal of Palaeogeography(Chinese Edition), 19(5): 757-772] [8] 姜在兴,王运增,王力,孔祥鑫,杨叶芃,张建国,薛欣宇. 2022. 陆相细粒沉积岩物质来源、搬运—沉积机制及多源油气甜点. 石油与天然气地质, 43(5): 1039-1048. [Jiang Z X,Wang Y Z,Wang L,Kong X X,Yang Y P,Zhang J G,Xue X Y.2022. Review on provenance,transport-sedimentation dynamics and multi-source hydrocarbon sweet spots of continental fine-grained sedimentary rocks. Oil & Gas Geology, 43(5): 1039-1048] [9] 黎茂稳,金之钧,董明哲,马晓潇,李志明,蒋启贵,鲍云杰,陶国亮,钱门辉,刘鹏,曹婷婷. 2020. 陆相页岩形成演化与页岩油富集机理研究进展. 石油实验地质, 42(4): 489-505. [Li M W,Jin Z J,Dong M Z,Ma X X,Li Z M,Jiang Q G,Bao Y J,Tao G L,Qian M H,Liu P,Cao T T.2020. Advances in the basic study of lacustrine shale evolution and shale oil accumulation. Petroleum Geology & Experiment, 42(4): 489-505] [10] 李国欣,石亚军,张永庶,陈琰,张国卿,雷涛. 2022a. 柴达木盆地油气勘探、地质认识新进展及重要启示. 岩性油气藏, 34(6): 1-18. [Li G X,Shi Y J,Zhang Y S,Chen Y,Zhang G Q,Lei T.2022a. New progress and enlightenment of oil and gas exploration and geological understanding in Qaidam Basin. Lithologic Reservoirs, 34(6): 1-18] [11] 李国欣,张永庶,陈琰,张国卿,王波,周飞,吴志雄,张长好,雷涛. 2022b. 柴达木盆地油气勘探进展、方向与对策. 中国石油勘探, 27(3): 1-19. [Li G X,Zhang Y S,Chen Y,Zhang G Q,Wang B,Zhou F,Wu Z X,Zhang C H,Lei T.2022b. Progress,orientation and countermeasures of petroleum exploration in Qaidam Basin. China Petroleum Exploration, 27(3): 1-19] [12] 李国欣,朱如凯,张永庶,陈琰,崔景伟,姜营海,伍坤宇,盛军,鲜成钢,刘合. 2022c. 柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义. 石油勘探与开发, 49(1): 18-31. [Li G X,Zhu R K,Zhang Y S,Chen Y,Cui J W,Jiang Y H,Wu K Y,Sheng J,Xian C G,Liu H.2022c. Geological characteristics,evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin,NW China. Petroleum Exploration and Development, 49(1): 18-31] [13] 李国欣,伍坤宇,朱如凯,张永庶,吴松涛,陈琰,申颖浩,张静,邢浩婷,李亚锋,陈晓冬,张闯,张斌,刘畅,鲜成钢,刘合. 2023. 巨厚高原山地式页岩油藏的富集模式与高效动用方式: 以柴达木盆地英雄岭页岩油藏为例. 石油学报, 44(1): 144-157. [Li G X,Wu K Y,Zhu R K,Zhang Y S,Wu S T,Chen Y,Shen Y H,Zhang J,Xing H T,Li Y F,Chen X D,Zhang C,Zhang B,Liu C,Xian C G,Liu H.2023. Enrichment model and high-efficiency production of thick plateau mountainous shale oil reservoir: a case study of the Yingxiongling shale oil reservoir in Qaidam Basin. Acta Petrolei Sinica, 44(1): 144-157] [14] 李璇. 2020. 柴达木盆地西北部新生代介形类化石Sr/Ca比值特征及其古环境指示意义. 兰州大学硕士学位论文: 37-38. [Li X.2020. Sr/Ca ratio of ostracoda and its paleoenvironmental significance in Cenozoic,northwest Qaidam basin. Masteral dissertation of Lanzhou University: 37-38] [15] 刘占国,张永庶,宋光永,李森明,龙国徽,赵健,朱超,王艳清,宫清顺,夏志远. 2021. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制. 石油勘探与开发, 48(1): 68-80. [Liu Z G,Zhang Y S,Song G Y,Li S M,Long G H,Zhao J,Zhu C,Wang Y Q,Gong Q S,Xia Z Y.2021. Mixed carbonate rocks lithofacies features and reservoirs controlling mechanisms in the saline lacustrine basin in Yingxi Area,Qaidam Basin,NW China. Petroleum Exploration and Development, 48(1): 68-80] [16] 龙国徽,王艳清,朱超,夏志远,赵健,唐鹏程,房永生,李海鹏,张娜,刘健. 2021. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带. 岩性油气藏, 33(1): 145-160. [Long G H,Wang Y Q,Zhu C,Xia Z Y,Zhao J,Tang P C,Fang Y S,Li H P,Zhang N,Liu J.2021. Hydrocarbon accumulation conditions and favorable exploration plays in Yingxiongling structural belt,Qaidam Basin. Lithologic Reservoirs, 33(1): 145-160] [17] 吕宝凤,张越青,杨书逸. 2011. 柴达木盆地构造体系特征及其成盆动力学意义. 地质论评, 57(2): 167-174. [Lü B F,Zhang Y Q,Yang S Y.2011. Characteristics of structural system and its implication for formation dynamics in Qaidam Basin. Geological Review, 57(2): 167-174] [18] 潘家伟,李海兵,孙知明,刘栋梁,吴婵,于常青. 2015. 阿尔金断裂带新生代活动在柴达木盆地中的响应. 岩石学报, 31(12): 3701-3712. [Pan J W,Li H B,Sun Z M,Liu D L,Wu C,Yu C Q.2015. Response of Cenozoic activity of Altun fault zone in Qaidam Basin. Acta Petrologica Sinica, 31(12): 3701-3712] [19] 潘裕生. 1999. 青藏高原的形成与隆升. 地学前缘, 6(3): 153-160,162-163. [Pan Y S.1999. Formaion and uplifing of the Qinghai-Tibet Plateau. Earth Science Frontiers, 6(3): 153-160,162-163] [20] 舒豫川,胡广,庞谦,胡朝伟,夏青松,谭秀成. 2021. 柴达木盆地咸湖相烃源岩特征: 以英西地区下干柴沟组上段为例. 断块油气田, 28(2): 179-186. [Shu Y C,Hu G,Pang Q,Hu C W,Xia Q S,Tan X C.2021. Characteristics of source rocks of salt lake facies in Qaidam Basin: taking upper member of Xiaganchaigou Formation in Yingxi Region as an example. Fault-Block Oil & Gas Field, 28(2): 179-186] [21] 宋世骏. 2022. 柴达木盆地新生代咸化湖盆细粒岩差异性发育机理及其地质意义. 西北大学博士学位论文: 80-106. [Song S J.2022. Different developing mechanism of fine-grained sediments in Cenozoic saline lakes in the Qaidam Basin and its geological implications. Doctoral dissertation of Northwest University: 80-106] [22] 孙焕泉. 2017. 济阳坳陷页岩油勘探实践与认识. 中国石油勘探, 22(4): 1-14. [Sun H Q.2017. Exploration practice and cognitions of shale oil in Jiyang depression. China Petroleum Exploration, 22(4): 1-14] [23] 王倩倩,袁四化,王亚东,李伟民,刘永江,郑世刚,赵英利. 2024. 柴达木盆地西部地区新生代盆地性质. 吉林大学学报(地球科学版), 54(1): 160-181. [Wang Q Q,Yuan S H,Wang Y D,Li W M,Liu Y J,Zheng S G,Zhao Y L.2024. The nature of the Cenozoic Western Qaidam Basin. Journal of Jilin University(Earth Science Edition), 54(1): 160-181] [24] 王伟涛,张培震,段磊,张博譞,刘康,黄荣,刘彩彩,张竹琪,郑德文,郑文俊,张会平. 2022. 柴达木盆地新生代地层年代框架与沉积-构造演化. 科学通报,67(S2): 3452-3475. [Wang W T,Zhang P Z,Duan L,Zhang B X,Liu K,Huang R,Liu C C,Zhang Z Q,Zheng D W,Zheng W J,Zhang H P.2022. Chronological framework and sedimentary-tectonic evolution of Cenozoic strata in Qaidam Basin. Chinese Science Bulletin,67(S2): 3452-3475] [25] 王艳清,刘云田,黄革萍,李森明,夏志远,宫清顺. 2014. 柴达木盆地西部地区古近—新近系沉积体系与油气分布. 北京: 石油工业出版社,120-167. [Wang Y Q,Liu Y T,Huang G P,Li S M,Xia Z Y,Gong Q S.2014. Paleogene Sedimentary System and Oil and Gas Distribution in Western Qaidam Basin. Beijing: Petroleum Industry Press,120-167] [26] 王益友,郭文莹,张国栋. 1979. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用. 同济大学学报, 7(2): 51-60. [Wang Y Y,Guo W Y,Zhang G D.1979. Application of some geochemical indicators in determining of sedimentary environment of the Funing Group(paleogene),Jin-hu depression,Kiangsu Province. Journal of Tongji University, 7(2): 51-60] [27] 吴磊,杨惠童,张永庶,张军勇,魏岩岩,黄凯,曹冯威,葛梦佳,叶雨晖,陈琰,唐建超,林秀斌,肖安成,陈汉林,杨树锋. 2023. 新生代柴达木盆地与周缘造山带的构造耦合. 地质学报, 97(9): 2939-2955. [Wu L,Yang H T,Zhang Y S,Zhang J Y,Wei Y Y,Huang K,Cao F W,Ge M J,Ye Y H,Chen Y,Tang J C,Lin X B,Xiao A C,Chen H L,Yang S F.2023. Structural coupling between the Qaidam Basin and bordering orogenic belts in the Cenozoic. Acta Geologica Sinica, 97(9): 2939-2955] [28] 吴因业,吕佳蕾,方向,杨智,王岚,马达德,陶士振. 2019. 湖相碳酸盐岩—混积岩储层有利相带分析: 以柴达木盆地古近系为例. 天然气地球科学, 30(8): 1150-1157. [Wu Y Y,Lü J L,Fang X,Yang Z,Wang L,Ma D D,Tao S Z.2019. Analysis of favorable facies belts in reservoir of lacustrine carbonate rocks-hybrid sediments: case study of Paleogene in Qaidam Basin. Natural Gas Geoscience, 30(8): 1150-1157] [29] 吴智平,周瑶琪. 2000. 一种计算沉积速率的新方法: 宇宙尘埃特征元素法. 沉积学报, 18(3): 395-399. [Wu Z P,Zhou Y Q.2000. Using the characteristic elements from meteoritic must in strata to calculate sedimentation rate. Acta Sedimentologica Sinica, 18(3): 395-399] [30] 夏青松,陆江,杨鹏,张昆,杨朝屹,聂俊杰,朱云舫,李立芳. 2023. 柴达木盆地英西地区渐新统下干柴沟组上段储层微观孔隙结构特征. 岩性油气藏, 35(1): 132-144. [Xia Q S,Lu J,Yang P,Zhang K,Yang C Y,Nie J J,Zhu Y F,Li L F.2023. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi Area,Qaidam Basin. Lithologic Reservoirs, 35(1): 132-144] [31] 夏志远,刘占国,李森明,王艳清,王鹏,管斌. 2017. 岩盐成因与发育模式: 以柴达木盆地英西地区古近系下干柴沟组为例. 石油学报, 38(1): 55-66. [Xia Z Y,Liu Z G,Li S M,Wang Y Q,Wang P,Guan B.2017. Origin and developing model of rock salt: a case study of Lower Ganchaigou Formation of Paleogene in the west of Yingxiong ridge,Qaidam Basin. Acta Petrolei Sinica, 38(1): 55-66] [32] 杨田,操应长,田景春. 2021. 浅谈陆相湖盆深水重力流沉积研究中的几点认识. 沉积学报, 39(1): 88-111. [Yang T,Cao Y C,Tian J C.2021. Discussion on research of deep-water gravity flow deposition in lacustrine basin. Acta Sedimentologica Sinica, 39(1): 88-111] [33] 杨田,操应长,王健,田景春,蔡来星,余文强. 2023. 陆相湖盆深水浊流与泥质碎屑流间过渡流沉积与沉积学意义. 沉积学报, 41(5): 1295-1310. [Yang T,Cao Y C,Wang J,Tian J C,Cai L X,Yu W Q.2023. Deep-water deposition for transitional flow from turbidity current to muddy debris flow in lacustrine basins and its sedimentological significance. Acta Sedimentologica Sinica, 41(5): 1295-1310] [34] 易定红,王建功,石兰亭,王鹏,陈娟,孙松领,石亚军,司丹. 2019. 柴达木盆地英西地区E23碳酸盐岩沉积演化特征. 岩性油气藏, 31(2): 46-55. [Yi D H,Wang J G,Shi L T,Wang P,Chen J,Sun S L,Shi Y J,Si D.2019. Sedimentary evolution characteristics of E23 carbonate rocks in Yingxi Area,Qaidam Basin. Lithologic Reservoirs, 31(2): 46-55] [35] 袁剑英,黄成刚,曹正林,李智勇,万传治,徐丽,潘星,吴丽荣. 2015. 咸化湖盆白云岩碳氧同位素特征及古环境意义: 以柴西地区始新统下干柴沟组为例. 地球化学, 44(3): 254-266. [Yuan J Y,Huang C G,Cao Z L,Li Z Y,Wan C Z,Xu L,Pan X,Wu L R.2015. Carbon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance: a case study of Lower Eocene Ganchaigou Formation in western Qaidam Basin. Geochimica, 44(3): 254-266] [36] 袁剑英,黄成刚,夏青松,曹正林,赵凡,万传治,潘星. 2016. 咸化湖盆碳酸盐岩储层特征及孔隙形成机理: 以柴西地区始新统下干柴沟组为例. 地质论评, 62(1): 111-126. [Yuan J Y,Huang C G,Xia Q S,Cao Z L,Zhao F,Wan C Z,Pan X.2016. The characteristics of carbonate reservoir,and formation mechanism of pores in the saline lacustrine basin: a case study of the lower Eocene Ganchaigou Formation in western Qaidam Basin. Geological Review, 62(1): 111-126] [37] 张斌,何媛媛,陈琰,孟庆洋,黄家旋,袁莉. 2018. 柴达木盆地西部咸化湖相优质烃源岩形成机理. 石油学报, 39(6): 674-685. [Zhang B,He Y Y,Chen Y,Meng Q Y,Huang J X,Yuan L.2018. Formation mechanism of excellent saline lacustrine source rocks in western Qaidam Basin. Acta Petrolei Sinica, 39(6): 674-685] [38] 张道伟,薛建勤,伍坤宇,陈晓冬,王牧,张庆辉,郭宁. 2020. 柴达木盆地英西地区页岩油储层特征及有利区优选. 岩性油气藏, 32(4): 1-11. [Zhang D W,Xue J Q,Wu K Y,Chen X D,Wang M,Zhang Q H,Guo N.2020. Shale oil reservoir characteristics and favorable area optimization in Yingxi Area,Qaidam Basin. Lithologic Reservoirs, 32(4): 1-11] [39] 张世铭,张小军,王建功,张婷静,崔俊,王超,伏珏蓉. 2022. 咸化湖盆混合沉积特征及控制因素分析: 以柴达木盆地西部地区古近系下干柴沟组为例. 中国矿业大学学报, 51(1): 160-173. [Zhang S M,Zhang X J,Wang J G,Zhang T J,Cui J,Wang C,Fu J R.2022. Characteristics and their controlling factors of mixed sediments in saline lakes: a case study of lower Ganchaigou Formation in the western Qaidam Basin. Journal of China University of Mining & Technology, 51(1): 160-173] [40] 周传明,张俊明,李国祥,虞子冶. 1997. 云南永善肖滩早寒武世早期碳氧同位素记录. 地质科学, 32(2): 201-211. [Zhou C M,Zhang J M,Li G X,Yu Z Y.1997. Carbon and oxygen isotopic records of early early Cambrian in xiaotan,Yongshan,Yunnan. Chinese Journal of Geology(Scientia Geologica Sinica), 32(2): 201-211] [41] 朱超,刘占国,宋光永,龙国徽,宫清顺,赵健,李森明,夏志远,吴颜雄,田明智. 2022. 柴达木盆地英雄岭构造带古近系湖相碳酸盐岩沉积模式、演化与分布. 石油学报, 43(11): 1558-1567,1622. [Zhu C,Liu Z G,Song G Y,Long G H,Gong Q S,Zhao J,Li S M,Xia Z Y,Wu Y X,Tian M Z.2022. Sedimentary model,evolution and distribution of Paleogene lacustrine carbonate rocks in Yingxiongling structural belt,Qaidam Basin. Acta Petrolei Sinica, 43(11): 1558-1567,1622] [42] 朱如凯,张婧雅,李梦莹,蔡毅,吴松涛,刘畅,张素荣,康缘. 2023. 陆相页岩油富集基础研究进展与关键问题. 地质学报, 97(9): 2874-2895. [Zhu R K,Zhang J Y,Li M Y,Cai Y,Wu S T,Liu C,Zhang S R,Kang Y.2023. Advances and key issues in the basic research of non-marine shale oil enrichment. Acta Geologica Sinica, 97(9): 2874-2895] [43] 邹才能,冯有良,杨智,蒋文琦,潘松圻,张天舒,王小妮,朱吉昌,李嘉蕊. 2022a. 湖盆细粒重力流沉积作用过程及甜点层发育机制是什么?地球科学,(10): 3864-3866. [Zou C N,Feng Y L,Yang Z,Jiang W Q,Pan S Q,Zhang T S,Wang X N,Zhu J C,Li J R.2022a. What are the lacustrine fine-grained gravity flow sedimentation process and the genetic mechanism of sweet sections for shale oil?Earth Science,(10): 3864-3866] [44] 邹才能,杨智,董大忠,赵群,陈振宏,冯有良,李嘉蕊,王小妮. 2022b. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. [Zou C N,Yang Z,Dong D Z,Zhao Q,Chen Z H,Feng Y L,Li J R,Wang X N.2022b. Formation,distribution and prospect of unconventional hydrocarbons in source rock strata in China. Earth Science, 47(5): 1517-1533] [45] 邹才能,冯有良,杨智,蒋文琦,张天舒,张洪,王小妮,朱吉昌,魏琪钊. 2023a. 中国湖盆细粒重力流沉积作用及其对页岩油“甜点段”发育的影响. 石油勘探与开发, 50(5): 883-897. [Zou C N,Feng Y L,Yang Z,Jiang W Q,Zhang T S,Zhang H,Wang X N,Zhu J C,Wei Q Z.2023a. Fine-grained gravity flow sedimentation and its influence on development of shale oil sweet spot intervals in lacustrine basins in China. Petroleum Exploration and Development, 50(5): 883-897] [46] 邹才能,杨智,张国生,朱如凯,陶士振,袁选俊,侯连华,董大忠,郭秋麟,宋岩,冉启全,邱振,吴松涛,马锋,白斌,王岚,熊波,潘松圻,刘翰林,王小妮. 2023b. 非常规油气地质学理论技术及实践. 地球科学, 48(6): 2376-2397. [Zou C N,Yang Z,Zhang G S,Zhu R K,Tao S Z,Yuan X J,Hou L H,Dong D Z,Guo Q L,Song Y,Ran Q Q,Qiu Z,Wu S T,Ma F,Bai B,Wang L,Xiong B,Pan S Q,Liu H L,Wang X N.2023b. Theory,technology and practice of unconventional petroleum geology. Earth Science, 48(6): 2376-2397] [47] 邹才能,马锋,潘松圻,张新顺,吴松涛,傅国友,王红军,杨智. 2023c. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展. 地学前缘, 30(1): 128-142. [Zou C N,Ma F,Pan S Q,Zhang X S,Wu S T,Fu G Y,Wang H J,Yang Z.2023c. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China. Earth Science Frontiers, 30(1): 128-142] [48] An Z S,Kutzbach J E,Prell W L,Porter S C.2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62-66. [49] Baas J H,Best J L,Peakall J,Wang M.2009. A phase diagram for turbulent,transitional,and laminar clay suspension flows. Journal of Sedimentary Research, 79: 162-183. [50] Baas J H,Best J L,Peakall J.2011. Depositional processes,bedform development and hybrid bed formation in rapidly decelerated cohesive(mud-sand)sediment flows. Sedimentology, 58: 1953-1987. [51] Baas J H,Tracey N D,Peakall J.2021. Sole marks reveal deep-marine depositional process and environment: implications for flow transformation and hybrid-event-bed models. Journal of Sedimentary Research, 91: 986-1009. [52] Carroll A R,Bohacs K M.1999. Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology, 27: 99. [53] Epstein S,Buchsbaum R,Lowenstam H A,Urey H C.1953. Revised carbonate-water isotopic temperature scale. GSA Bulletin, 64(11): 1315-1326. [54] Feng Y L,Zou C N,Li J Z,Lin C S,Wang H J,Jiang S,Yang Z,Zhang S,Fu X L.2021. Sediment gravity-flow deposits in Late Cretaceous Songliao postrift downwarped lacustrine basin,northeastern China. Marine and Petroleum Geology, 34: 105378. [55] Hahn D G,Manabe S.1975. The role of mountains in the South Asian monsoon circulation. Journal of the Atmospheric Sciences, 32: 1515-1541. [56] Hatch J R,Leventhal J S.1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U.S.A. Chemical Geology, 99: 65-82. [57] Haughton P,Davis C,McCaffrey W,Barker S.2009. Hybrid sediment gravity flow deposits-Classification,origin and significance. Marine and Petroleum Geology, 26: 1900-1918. [58] Hou M Q,Zhuang G S,Wu M H.2021a. Isotopic fingerprints of mountain uplift and global cooling in paleoclimatic and paleoecological records from the northern Tibetan Plateau. Palaeogeography,Palaeoclimatology,Palaeoecology, 578: 110578. [59] Hou M Q,Zhuang G S,Ji J L,Xiang S Y,Kong W W,Cui X Q,Wu M H,Hren M.2021b. Profiling interactions between the Westerlies and Asian summer monsoons since 45 ka: insights from biomarker,isotope,and numerical modeling studies in the Qaidam Basin. Geological Society of America Bulletin, 133: 1531-1541. [60] Kelts K.1988. Environments of deposition of lacustrine petroleum source rocks: An introduction. Geological Society of London Special Publications, 40: 3-26. [61] Lamb M P,Mohrig D.2009. Do hyperpycnal-flow deposits record river-flood dynamics?Geology, 37: 1067-1070. [62] Li Q Q,Xu S,Hao F,Shu Z G,Chen F L,Lu Y C,Wu S Q,Zhang L.2021. Geochemical characteristics and organic matter accumulation of argillaceous dolomite in a saline lacustrine basin: a case study from the Paleogene Xingouzui Formation,Jianghan Basin,China. Marine and Petroleum Geology, 128: 105041. [63] Mulder T,Alexander J.2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48: 269-299. [64] Mulder T,Syvitski J P M,Migeon S,Faugères J C,Savoye B.2003. Marine hyperpycnal flows: Initiation,behavior and related deposits: a review. Marine and Petroleum Geology, 20: 861-882. [65] Popov S V,Shcherba I G,Ilyina L B,Nevesskaya L A,Paramonova N P,Khondkarian S O,Magyar I.2006. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238: 91-106. [66] Ruddiman W F,Kutzbach J E.1989. Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American west. Journal of Geophysical Research: Atmospheres, 94: 18409-18427. [67] Shanmugam G.2000.50 years of the turbidite paradigm(1950s—1990s): deep-water processes and facies models: a critical perspective. Marine and Petroleum Geology, 17: 285-342. [68] Shi Y J,Xu L,Huang C G,Wang L Q,Ma X M.2020. The existence and significance of two kinds of effective reservoirs in deep water area of the western Qaidam Basin. Acta Geologica Sinica-English Edition, 94: 1726-1727. [69] Song S J,Huang L,Zhang Q,Li X,Liu C Y.2022. New insights for origin of fine-grained sediments from the early Neogene Qaidam Basin: wind and fluvial-lacustrine source-to-sink processes. Marine and Petroleum Geology, 145: 105853. [70] Sumner E J,Talling P J,Amy L A.2009. Deposits of flows transitional between turbidity current and debris flow. Geology, 37: 991-994. [71] Talling P J,Masson D G,Sumner E J,Malgesini G.2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59: 1937-2003. [72] Wang X,Carrapa B,Sun Y C,Dettman D L,Chapman J B,Caves Rugenstein J K,Clementz M T,DeCelles P G,Wang M,Chen J,Quade J,Wang F,Li Z J,Oimuhammadzoda I,Gadoev M,Lohmann G,Zhang X,Chen F H.2020. The role of the westerlies and orography in Asian hydroclimate since the late Oligocene. Geology, 48: 728-732. [73] Wu M H,Zhuang G S,Hou M Q,Liu Z H.2021. Expanded lacustrine sedimentation in the Qaidam Basin on the northern Tibetan Plateau: manifestation of climatic wetting during the Oligocene icehouse. Earth and Planetary Science Letters, 565: 116935. [74] Wu S B,Zhao Z X.2022. Controlling effect of saline sedimentary environment on enrichment and exploitation of shale gas and oil in lacustrine basin. SN Applied Sciences, 4: 223. [75] Yang L L,Li X W,Zhuo Q G,Yu Z C,Yang Y L,Liu K Y.2022a. Effects of gypsum-salt rock on mineral transformations in a saline lacustrine basin: significance to reservoir development. Journal of Petroleum Science and Engineering, 211: 110240. [76] Yang Z,Zou C N,Hou L H,Wu S T,Lin S H,Luo X,Zhang L J,Zhao Z Y,Cui J W,Pan S Q.2019a. Division of fine-grained rocks and selection of “sweet sections”in the oldest continental shale in China: taking the coexisting combination of tight and shale oil in the Permian Junggar Basin. Marine and Petroleum Geology, 109: 339-348. [77] Yang Z,Zou C N,Wu S T,Lin S H,Pan S Q,Niu X B,Men G T,Tang Z X,Li G S,Zhao J H,Jia X Y.2019b. Formation,distribution and resource potential of the “sweet areas(sections)”of continental shale oil in China. Marine and Petroleum Geology, 102: 48-60. [78] Yang Z,Zou C N,Gu Z D,Yang F,Li J R,Wang X N.2022b. Geological characteristics and main challenges of onshore deep oil and gas development in China. Advances in Geo-Energy Research, 6: 264-266. [79] Yang Z,Zou C N,Wu S T,Pan S Q,Wang X N,Liu H T,Jiang W Q,Li J R,Li Q Y,Niu X B,Li G H,Tang Z X,Guo X G,Huang D,Wei Q Z.2022c. Characteristics,types,and prospects of geological sweet sections in giant continental shale oil provinces in China. Journal of Earth Science, 33: 1260-1277. [80] Zachos J,Pagani M,Sloan L,Thomas E,Billups K.2001. Trends,rhythms,and aberrations in global climate 65 Ma to present. Science, 292: 686-693. [81] Zhang X,Liu C L,Guo Z Q,Gui H R,Tian J X,Wu X P,Peng B,Sun Y K,Ping Y Q.2020. Characteristics and influencing factors of unconventional hydrocarbon accumulation in saline lacustrine fine-grained sedimentary rocks in the northwestern Qaidam Basin. Energy & Fuels, 34: 2726-2738. [82] Zhuang G S,Zhang Y G,Hourigan J,Ritts B,Hren M,Hou M Q,Wu M H,Kim B.2019. Microbial and geochronologic constraints on the Neogene paleotopography of northern Tibetan Plateau. Geophysical Research Letters, 46: 1312-1319. |