[1] 常华进,储雪蕾,冯连君,黄晶,张启锐. 2008. 湖南安化留茶坡硅质岩的REE地球化学特征及其意义. 中国地质, 35(5): 879-887. [Chang H J,Chu X L,Feng L J,Huang J,Zhang Q R.2008. REE geochemistry of the Liuchapo chert in Anhua,Hunan. Geology in China, 35(5): 879-887] [2] 邓宏文,钱凯. 1993. 沉积地球化学与环境分析. 甘肃兰州: 甘肃科学技术出版社,1-262. [Deng H W,Qian K.1993. Sedimentary Geochemistry and Environmental Analysis. Gansu Lanzhou: Gansu Science and Technology Press,1-262] [3] 丁林,钟大赉. 1995. 滇西昌宁—孟连带古特提斯洋硅质岩稀土元素和铈异常特征. 中国科学(B辑), 25(1): 93-100. [Ding L,Zhong D L.1995. Abnormal characteristics of Ce and rare earth elements in the cherts from Changning-Menglian Paleo-Tethys suture zone. Science in China(Series B), 25(1): 93-100] [4] 杜贵超,仓辉,胡双全,曹卿荣,高鹏鹏. 2017. 泰国呵叻盆地二叠系碳酸盐岩元素地球化学特征与古环境意义. 世界地质, 36(1): 135-143. [Du G C,Cang H,Hu S Q,Cao Q R,Gao P P.2017. Geochemical characteristics and its paleo-environmental significance of Permian carbonate rocks in Khorat Basin,Thailand. Global Geology, 36(1): 135-143] [5] 杜远生,朱杰,顾松竹. 2006a. 北祁连肃南—带奥陶纪硅质岩沉积地球化学特征及其多岛洋构造意义. 地球科学: 中国地质大学学报, 31(1): 101-109. [Du Y S,Zhu J,Gu S Z.2006a. Sedimentary geochemistry and tectonic significance of Odovician cherts in Sunan,North Qilian Mountains. Earth Science: Journal of China University of Geosciences, 31(1): 101-109] [6] 杜远生,朱杰,顾松竹. 2006b.北祁连永登石灰沟奥陶纪硅质岩地球化学特征及大地构造意义. 地质论评, 52(2): 184-189. [Du Y S,Zhu J,Gu S Z.2006b. Sedimentary geochemistry of cherts from the Middle-Upper Ordovician in Shihuigou Area,North Qilian Orogenic Belt and its tectonic implications. Geological Review, 52(2): 184-189] [7] 杜远生,朱杰,顾松竹,徐亚军,杨江海. 2007. 北祁连造山带寒武系—奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示. 中国科学, 37(10): 1314-1329. [Du Y S,Zhu J,Gu S Z,Xu Y J,Yang J H.2007. Sedimentary geochemistry of cherts from the Cambrian-Ordovician in North Qilian Orogenic Belt and its implications for the multi-island ocean. Science in China(Series D), 37(10): 1314-1329] [8] 杜远生. 2009. 北祁连造山带加里东—早海西沉积地质学研究. 武汉: 中国地质大学出版社,2-32. [Du Y S.2009. The Study of Early Hercynian Sedimentary Geology Research of Northern Qilian Orogenic Belt during Caledonian-Early Hercynian. Wuhan: China University of Geosciences Press,2-32] [9] 关保德,耿午辰,戎治权,杜慧英. 1988. 河南东秦岭北坡中—上元古界. 郑州: 河南科学技术出版社,41-49. [Guan B D,Geng W C,Rong Z Q,Du H Y.1988. The Middle-Upper Proterozoic in the North Slope of the East Qinling Mountains,Henan Province. Zhengzhou: Henan Science and Technology Press,41-49] [10] 胡国辉,赵太平,周艳艳,王世炎. 2013. 华北克拉通南缘中—新元古代沉积地层对比研究及其地质意义. 岩石学报, 29(7): 2491-2507. [Hu G H,Zhao T P,Zhou Y Y,Wang S Y.2013. Meso-Neoproterozoic sedimentary formation in the southern margin of the North China Carton and its geological implications. Acta Petorlogica Sinica, 29(7): 2491-2507] [11] 翦万筹,胡云绪,华洪,刘洪福. 1993. 一个中元古代具壳后生动物群—“洛南生物群”的初步报道. 西北大学学报(自然科学版),33(1): 77-81. [Jian W C,Hu Y X,Hua H,Liu H F.1993. “Luonan Fauna”: a Middle Proterozoic shell-bearing Metazoan assemblage. Journal of Northwest University(Natural Science Edition),33(1): 77-81] [12] 李进龙,陈东敬. 2003. 古盐度定量研究方法综述. 油气地质与采收率, 10(5): 1-3,5. [Li J L,Chen D J.2003. Summary of quantified research method on paleosalinity. Petroleum Geology and Recovery Efficiency, 10(5): 1-3,5] [13] 李钦仲. 1985. 华北地台南缘(陕西部分)晚前寒武纪地层研究. 陕西西安: 西安交通大学出版社,44-46. [Li Q Z.1985. Study on the Late Precambrian Strata in the Southern Margin of the North China Platform(Shaanxi Province). Shaanxi Xi’an: Xi’an Jiao Tong University Press,44-46] [14] 李钦仲. 1995. 中国南北方元古代地层之衔接部位─小秦岭元古界剖面特征. 陕西地质, 13(2): 72-77. [Li Q Z.1995. The joint portion of the Proterozoic Strata in the South and North of China. Geology in Shaanxi, 13(2): 72-77] [15] 李文厚. 1986. 陕西洛南县北部晚前寒武纪地层、岩石学特征及沉积学研究. 西北大学硕士毕业论文: 1-95. [Li W H.1986. Late Precambrian stratigraphy,petrology and sedimentological study in northern Luonan County,Shaanxi Province. Masteral dissertation of Northwest University: 1-95] [16] 李文厚. 1991. 华北地台南缘高山河群碎屑岩潮坪沉积. 沉积学报, 9(3): 98-105. [Li W H.1991. Clasolite Tidal flat deposits of Gaoshanhe Group in the southern margin of the North China Platform. Acta Sedimentologica Sinica, 9(3): 98-105] [17] 刘刚,周东升. 2007. 微量元素分析在判别沉积环境中的应用: 以江汉盆地潜江组为例. 石油实验地质, 29(3): 307-311. [Liu G,Zhou D S.2007. Application of microelements analysis in identifying sedimentary environment: taking Qianjiang Formation in the Jianghan Basin as an example. Petroleum Geology & Experiment, 29(3): 307-311] [18] 邱树玉,刘洪福. 1982. 小秦岭地区(陕西境内)晚前寒武纪的叠层石及其地层意义. 西北大学学报,前寒武纪地质专辑,12(增刊): 127-195. [Qiu S Y,Liu H F.1982. The Late Precambrian stromatolites in the Xiaoqinling area(Shaanxi Province)and their stratigraphic significance. Journal of Northwest University,Precambrian Geological Album,12(s1): 127-195] [19] 史忠生,陈开远,史军,柳保军,何胡军,刘刚. 2003. 运用锶钡比判定沉积环境的可行性分析. 断块油气田, 10(2): 12-16. [Shi Z S,Chen K Y,Shi J,Liu B J,He H J,Liu G.2003. Feasibility analysis of the application of the ratio of Strontium to Barium on the identifying sedimentary environment. Fault-Block Oil & Gas Field, 10(2): 12-16] [20] 苏文博. 2016. 华北及扬子克拉通中元古代年代地层格架厘定及相关问题探讨. 地学前缘, 23(6): 156-185. [Su W B.2016. Revision of the Mesoproterozoic chronostratigraphic subdivision both of North China and Yangtze Cratons and the relevant issues. Earth Science Frontiers, 23(6): 156-185] [21] 孙镇城,杨藩,张枝焕,李守军,李东明,彭立才,曾学鲁,徐钰林,茅绍智,王强. 1997. 中国中新生代咸化湖泊沉积环境与油气生成. 北京: 石油工业出版社,1-194. [Sun Z C,Yang F,Zhang Z H,Li S J,Li D M,Peng L C,Zeng X L,Xu Y L,Mao S Z,Wang Q.1997. Sedimentary Environment and Oil and Gas Generation in the Mesozoic-Cenozoic Saline Lake in China. Beijing: Petroleum Industry Press,1-194] [22] 张锋军,杜少喜,王淼,杨运军. 2017. 洛南紫绿玛瑙地质特征及其综合开发利用. 地球科学前沿, 7(4): 513-525. [Zhang F J,Du S X,Wang M,Yang Y J.2017. Luonan purple green agate geological characteristics and their comprehensive exploitation and utilization. Advances in Geosciences, 7(4): 513-525] [23] 张克信,何卫红,徐亚东,宋博文,骆满生. 2017. 中国沉积岩建造与沉积大地构造. 北京: 地质出版社,221-222. [Zhang K X,He W H,Xu Y D,Song B W,Luo M S.2017. Sedimentary Rock Formation and Sedimentary Tectonics in China. Beijing: Geological Publishing House,221-222] [24] 张正伟,杨怀洲,朱炳泉. 2003. 东秦岭沉积建造演化与成矿. 地球学报, 24(4): 293-298. [Zhang Z W,Yang H Z,Zhu B Q.2003. The development sedimentary buildups and mineralization in the Eastern Qinling Mountain. Acta Geoscientia Sinica, 24(4): 293-298] [25] 赵太平,金成伟,翟明国,夏斌,周美夫. 2002. 华北陆块南部熊耳群火山岩的地球化学特征与因. 岩石学报, 18(1): 59-69. [Zhao T P,Jin C W,Zhai M G,Xia B,Zhou M F.2002. Geochemistry and petrogenesis of the Xiong’er Group in the Southern Regions of the North China Craton. Acta Petorlogica Siniea, 18(1): 59-69] [26] 赵太平,翟明国,夏斌,李惠民,张毅星,万渝生. 2004. 熊耳群火山岩锆石 SHRIMP 年代学研究: 对华北克拉通盖层发育初始时间的制约. 科学通报, 49(22): 2342-2349. [Zhao T P,Zhai M G,Xia B,Li H M,Zhang Y X,Wan Y S.2004. Zircon SHRIMP geochronology of Xiong’er Group volcanic rocks: constraints on the initial time of the caprock development in North China Craton. Chinese Science Bulletin, 49(22): 2342-2349] [27] 周鼎武,李文厚,张云翔. 2002. 区域地质综合研究的方法与实践. 北京: 科学出版社,70-71. [Zhou D W,Li W H,Zhang Y X.2002. Methods and Practice of Comprehensive Research on Regional Geology. Beijing: Science Press,70-71] [28] 朱赖民,张国伟,郭波,李犇. 2009. 华北地块南缘钼矿床黄铁矿流体包裹体氦、氩同位素体系及其对成矿动力学背景的示踪. 科学通报, 54(12): 1725-1735. [Zhu L M,Zhang G W,Guo B,Li B.2009. He-Ar isotopic system of fluid inclusions in pyrite from the molybdenum deposits in south margin of North China Block and its trace to metallogenetic and geodynamic background. Chinese Science Bulletin, 54(12): 1725-1735] [29] 朱士兴,邢裕盛,张鹏远. 1994. 华北地台中、上元古界生物地层序列. 北京: 地质出版社,192-200. [Zhu S X,Xing Y S,Zhang P Y.1994. Sequences of Biostratigraphy of the Middle and Upper Proterozoic in the North China Platform. Beijing: Geological Publishing House,192-200] [30] Adachi M,Yamamoto K,Sugisaki R.1986. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47(1): 125-148. [31] Beauchamp B,Boud A.2002. Growth and demise of Permian biogenic chert along Northwest Pangea: evidence for End Permian Collapse of thermohaline circulation. Palaeogeography, Palaeoclimatology,Palaeoecology, 184(1-2): 37-63. [32] Boström K,Kraaemer T,Gartner S.1973. Provenance and accumulation rates of opaline silica,Al,Ti,Fe,Mn,Cu,Ni,and Co in pacific pelagic sediments. Chemical Geology, 11(2): 123-148. [33] Boström K,Peterson M N A.1969. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Marine Geology, 7(5): 427-447. [34] Deng X H,Chen Y J,Santosh M,Yao J M.2013. Genesis of the 1.76 Ga Zhaiwa Mo-Cu and its link with the Xiong’er volcanics in the North China Craton: implications for accretionary growth along the margin of the Columbia supercontinent. Precambrian Research,227(S1): 337-348. [35] Dong Y P,Yang Z,Liu X M,Zhang X N,He D F,Li W,Zhang F F,Sun S S,Zhang H F,Zhang G W.2014. Neoproterozoic amalgamation of the Northern Qinling terrain to the North China craton: constraints from geochronology and geochemistry of the Kuanping ophiolite. Precambrian Research, 255: 77-95. [36] Dong Y P,Santosh M.2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt,Central China. Gondwana Research, 29: 1-40. [37] Dong Y P,Sun S S,Yang Z,Liu X M,Zhang F F,Li W,Cheng B,He D F,Zhang G W.2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt,China. Precambrian Research, 293: 73-90. [38] Emilio C.2002. Aquifer overexploitation: what does it mean?Hydrogeology Journal, 10(2): 254-277. [39] Friedman G M.1962. Comparison of moment measures for sieving and thin-section data in sedimentary petrological studies. Journal of Sedimentary Research, 32(1): 15-25. [40] German C R,Klinkhamer G P,Edmond J M,Mura A,Elderfield H.1990. Hydrothermal scavenging of rare earth elements in the ocean. Nature, 345: 516-518. [41] Girty G H,Ridge D L,Knaack C,Johnson D,AL-Riyami R K.1996. Provenance and depositional setting of Paleozoic chert and argillite,Sierra Nevada,California. Journal of Sedimentary Research, 66(1): 107-118. [42] Hara H,Kurihara T,Kuroda J.2010. Geological and geochemical aspects of A Devonian siliceous succession in Northern Thailand: implications for the opening of the Paleo-Tethys.Palaeogeography, Palaeoclimatology,Palaeoecology, 297(2): 452-464. [43] He B,Xu Y G,Zhong Y T,Guan J P.2010. The Guadalupian-Lopingian boundary mudstones at Chaotian(SW China)are clastic rocks rather than acidic tuffs: implication for a temporal coincidence between the End-Guadalupian mass extinction and the Emeishan volcanism. Lithos, 119(1-2): 10-19. [44] Hu G,Zhao T,Zhou Y.2014. Depositional age,provenance and tectonic setting of the Proterozoic Ruyang Group,southern margin of the North China Craton. Precambrian Research, 246(6): 296-318. [45] Maliva R G,Knoll A H,Simonson B M.2005. Secular change in the Precambrian silica cycle: insights from chert petrology. Geological Society of America Bulletin, 117(7): 835. [46] Marin-Carbonne J,Chaussidon M,Boiron M C,Robert F.2011. A combined in situ oxygen,silicon isotopic and fluid inclusion study of a chert sample from Onverwacht Group(3.35 Ga,South Africa): new constraints on fluid circulation. Chemical Geology, 286(3-4): 59-71. [47] Marin-Carbonne J,Chaussidon M,Robert F.2012. Micrometer-scale chemical and isotopic criteria(O and Si)on the origin and history of Precambrian cherts: implications for paleotemperature reconstructions. Geochimica et Cosmochimica Acta, 92(9): 129-147. [48] McLennan S M.1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200. [49] Meng Y,Zuo P,Zheng D,Sun F,Wang P,Wang Z,Li Y.2018. The earliest clastic sediments overlying the Xiong’er volcanic rocks: implications for the Mesoproterozoic tectonics of the southern North China Craton. Precambrian Research, 305: 268-282. [50] Murray R W,Buchholtz Ten Brink M R,Gerlach D C,Jones D L.1991. Rare earth,major,and trace element in chert from franciscan complexand monterey group: assessing REE Source to fine-grained marine sediments. Geochimica et Cosmochimica Acta, 55(7): 1875-1895. [51] Murray R W,Marilyn R,Buchholtz Ten Brink M R.1992. Interoceanic variation in the rare earth,major,and trace element depositional chemistry of chert: perspectives gained from the DSDP and ODP Record. Geochimica et Cosmochimica Acta, 56(5): 1897-1913. [52] Murray R W.1994. Chemical criteria to identify the depositional environment of chert: general principles and application. Sedimentary Geology, 90(3-4): 213-232. [53] Nie H,Yao J,Wan X,Zhu X Y,Siebel W,Chen F K.2016. Precambrian tectonothermal evolution of South Qinling and its affinity to the Yangtze Block: evidence from zircon ages and Hf-Nd isotopic compositions of basement rocks. Precambrian Research, 286: 167-179. [54] Rais W R,Buckley F.1988. Degree of pyritization of iron as a palaeoenvironmental indicator of bottom water oxygenation. Journal of Sedimentary Petrology, 58(5): 812-819. [55] Robert F,Marc C.2006. A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443: 969-972. [56] Shimizu H,Masuda A.1977. Cerium in chert as indication of marine environment of its formation. Nature,266: 346-348. [57] Taylor S R,McLennan S M.1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications,9-56. [58] Wang H,Wu Y B,Gao S,Liu X C,Liu Q,Qin Z W,Xie S W,Zhou L,Yang S H.2013. Continental origin of eclogites in the North Qinling terrane and its tectonic implications. Precambrian Research, 23: 13-30. [59] Yamamoto K.1987. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto. Sedimentary Geology, 52(1-2): 65-108. [60] Zhang H F,Zhang J,Zhang G W,Santosh M,Yu H,Yang Y H,Wang J L.2016. Detrital zircon U-Pb,Lu-Hf,and O isotopes of the Wufoshan Group: implications for episodic crustal growth and reworking of the southern North China craton. Precambrian Research, 273: 112-128. [61] Zhao G C,He Y H,Sun M.2009. The Xiong’er volcanic belt at the southern margin of the North China Craton: petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181. |