[1] 操应长,宋玲,王健,李俊良,刘明全,方勇. 2011. 重矿物资料在沉积物物源分析中的应用: 以涠西南凹陷古近系流三段下亚段为例. 沉积学报, 29(5): 835-841. [Cao Y C,Song L,Wang J,Li J L,Liu M Q,Fang Y.2011. Application of heavy mineral data in the analysis of sediment source: A case study in the Paleogene Lower Submember of the Third Member of the Liushagang Formation,Weixi’nan Depression. Acta Sedimentologica Sinica, 29(5): 835-841] [2] 陈波,王子天,康莉,张顺存,史基安. 2016. 准噶尔盆地玛北地区三叠系百口泉组储层成岩作用及孔隙演化. 吉林大学学报(地球科学版), 46(1): 23-35. [Chen B,Wang Z T,Kang L,Zhang S C,Shi J A.2016. Diagenesis and pore evolution of Triassic Baikouquan Formation in Mabei region,Junggar basin. Journal of Jilin University(Earth Scicnce Edition), 46(1): 23-35] [3] 谷东起,边淑华,胡泽建,张绪良. 2003. 泉州湾海域表层沉积物矿物碎屑分布特征及其环境意义. 海岸工程, 22(1): 22-30. [Gu D Q,Bian S H,Hu Z J,Zhang X L.2003. Distribution characteristics of mineral detritus in surface sediment from the Quanzhou bay and their environmental significance. Coastal Engineering, 22(1): 22-30] [4] 韩金炎. 1987. 数学地质. 北京: 煤炭工业出版社. [Han J Y.1987. Mathematical Geology. Beijing: China Coal Industry Publishing House] [5] 和钟铧,刘招君,郭巍. 2001. 柴达木盆地北缘大煤沟剖面重矿物分析及其地质意义. 世界地质, 20(3): 279-284. [He Z H,Liu Z J,Guo W.2001. The heavy mineral analysis and its geological significance of Dameigou section in Northern Qaidam Basin. World Geology, 20(3): 279-284] [6] 姜芸,肖龙,周佩,王国灿. 2015. 新疆西准噶尔红山岩体地质地球化学特征及对下地壳性质的启示. 地球科学(中国地质大学学报), 40(7): 1129-1147. [Jiang Y,Xiao L,Zhou P,Wang G C.2015. Geological,geochemical characteristics of Hongshan pluton: Constraint for lower crust of West Junggar,Xinjiang. Earth Science(Journal of China University of Geosciences), 40(7): 1129-1147] [7] 匡立春,唐勇,雷德文,吴涛,瞿建华. 2014. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组扇控大面积岩性油藏勘探实践. 中国石油勘探, 19(6): 14-23. [Kuang L C,Tang Y,Lei D W,Wu T,Qu J H.2014. Exploration of fan-controlled large area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu depression in Junggar Basin. China Petroleum Exploration, 19(6): 14-23] [8] 李武显,徐夕生,周新民,谢国刚,李均辉. 1998. 庐山“星子杂岩”中绿帘石花岗岩的定年和成因. 地质论评, 14(2): 143-148. [Li W X,Xu X S,Zhou X M,Xie G G,Li J H.1998. Epidote granite in the “Xingzi Complex”of Lushan Mountain: Dating and genesis. Geological Review, 14(2): 143-148] [9] 李云,胡作维,贺静,袁效奇,邓秀芹. 2015. 鄂尔多斯盆地上三叠统延长组重矿物的成岩作用. 古地理学报, 17(1): 119-128. [Li Y,Hu Z W,He J,Yuan X Q,Deng X Q.2015. Diagenesis of heavy minerals in the Upper Triassic Yanchang Formation of Ordos Basin. Journal of Palaeogeography(Chinese Edition), 17(1): 119-128] [10] 李增学,常象春,赵秀丽. 2010. 岩相古地理学. 北京: 地质出版社. [Li Z X,Chang X C,Zhao X L.2010. Lithofacies Palaeogeography. Beijing: Geological Publishing House] [11] 廖世勇,姜耀辉,杨万志. 2009. 西昆仑大同岩体岩浆成因绿帘石矿物学研究及其对岩体形成构造环境的制约. 矿物学报, 29(1): 49-55. [Liao S Y,Jiang Y H,Yang W Z.2009. Mineralogical study on magmatic epidote from Datong pluton,and its implication for tectonic setting of Western Kunlun region. Acta Mineralogica Sinica, 29(1): 49-55] [12] 刘金庆,张勇,印萍,宋红瑛,毕世普,刘珊珊. 2016. 青岛近岸海域表层沉积物重矿物分布及物源. 海洋地质与第四纪地质, 2(1): 69-78. [Liu J Q,Zhang Y,Yin P,Song H Y,Bi S P,Liu S S.2016. Distribution and provenance of heavy minerals in surface sediments of the Qingdao offshore area. Marine Geology & Quaternary Geology, 2(1): 69-78] [13] 柳双权,张顺存,戴龙,矫睿,鲁新川,史基安,张生根,邹妞妞. 2014. 准噶尔盆地石炭系火山岩优质储层特征及主控因素. 兰州大学学报(自然科学版), 50(6): 786-794. [Liu S Q,Zhang S C,Dai L,Jiao R,Lu X C,Shi J A,Zhang S G,Zou N N.2014. Characteristics and main controlling factors of high quality carboniferous volcanic reservoirs in Junggar Basin. Journal of Lanzhou University(Natural Sciences), 50(6): 786-794] [14] 毛治国,邹才能,朱如凯,郭宏莉,王君,唐勇,祁利琪,张志更. 2010. 准噶尔盆地石炭纪火山岩岩石地球化学特征及其构造环境意义. 岩石学报, 26(1): 207-216. [Mao Z G,Zou C N,Zhu R K,Guo H L,Wang J,Tang Y,Qi L Q,Zhang Z G.2010. Geochemical characteristics and tectonic settings of carboniferous volcanic rocks in Junggar Basin. Acta Petrologica Sinica, 26(1): 207-216] [15] 孟祥超,陈能贵,王海明,徐洋,谢宗瑞,邹志文,郭华军,李亚哲. 2015. 砂砾岩沉积特征分析及有利储集相带确定:以玛北斜坡区百口泉组为例. 沉积学报, 33(6): 1235-1246. [Meng X C,Chen N G,Wang H M,Xu Y,Xie Z R,Zou Z W,Guo H J,Li Y Z.2015. Sedimentary characteristics of glutenite and its favourable accumulation facies: A case study from T1b,Mabei Slope,Junggar Basin. Acta Sedimentologica Sinica, 33(6): 1235-1246] [16] 倪振. 2016. 准噶尔盆地乌夏断裂带三叠系储层黏土矿物特征. 辽宁化工, 45(1): 109-111. [Ni Z.2016. Characteristics of clay minerals of Triassic reservoir in Wuxia Fault,Junggar Basin. Liaoning Chemical Industry, 45(1): 109-111] [17] 潘建国,王国栋,曲永强,唐勇,齐雯,谭开俊,尹路,魏彩茹. 2015. 砂砾岩成岩圈闭形成与特征:以准噶尔盆地玛湖凹陷三叠系百口泉组为例. 天然气地球科学, 26(1): 41-49. [Pan J G,Wang G D,Qu Y Q,Tang Y,Qi W,Tan K J,Yin L,Wei C R.2015. Formation mechanism and characteristics of sandy conglomerate diagenetic trap: A case study of the Triassic Baikouquan Formation in the Mahu Sag,Junggar Basin. Natural Gas Geoscience, 26(1): 41-49] [18] 彭飚,金振奎,朱小二,崔学敏,杨天博,石良. 2017. 扇三角洲沉积模式探讨: 以准噶尔盆地玛北地区下三叠统百口泉组为例. 古地理学报, 19(2): 315-326. [Peng B,Jin Z K,Zhu X E,Cui X M,Yang T B,Shi L.2017. Discussion about depositional models of fan delta: A case study from the Lower Triassic Baikouquan Formation in Mabei area,Junggar Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 315-326] [19] 齐雯,潘建国,王国栋,曲永强,谭开俊,尹路. 2015. 准噶尔盆地玛湖凹陷斜坡区百口泉组储层流体包裹体特征及油气充注史. 天然气地球科学, 26(1): 64-71. [Qi W,Pan J G,Wang G D,Qu Y Q,Tan K J,Yin L.2015. Fluid inclusion and hydrocarbon charge history for the reservoir of Baikouquan Formation in the Mahu Sag,Junggar Basin. Natural Gas Geoscience, 26(1): 64-71] [20] 瞿建华,张顺存,李辉,张磊,唐勇. 2013. 玛北地区三叠系百口泉组油藏成藏控制因素. 特种油气藏, 51(6): 51-56. [Qu J H,Zhang S C,Li H,Zhang L,Tang Y.2013. Control factors of the Triassic Baikouquan reservoirs in Mabei area of Junggar Basin. Special Oil & Gas Reservoirs, 51(6): 51-56] [21] 唐勇,徐洋,瞿建华,孟祥超,邹志文. 2014. 玛湖凹陷百口泉组扇三角洲群特征及分布. 新疆石油地质, 35(6): 628-635. [Tang Y,Xu Y,Qu J H,Meng X C,Zou Z W.2014. Fan-delta group characteristics and its distribution of the Triassic Baikouquan reservoirs in Mahu Sag of Junggar Basin. Xinjiang Petroleum Geology, 35(6): 628-635] [22] 唐勇,徐洋,李亚哲,王力宝. 2018. 玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义. 新疆石油地质, 39(1): 16-22. [Tang Y,Xu Y,Li Y Z,Wang L B.2018. Sedimentation model and exploration significance of Large-scaled shallow retrogradation fan delta in Mahu Sag. Xinjiang Petroleum Geology, 39(1): 16-22] [23] 万友利. 2011. 鄂尔多斯盆地南缘延长组物源与成岩耦合关系研究. 成都理工大学博士学位论文,1-110. [Wan Y L.2011. Study on the Spatial Coupling Relation of between the Sediment Source and Diagenesis of Yanchang Formation in Southern Ordos Basin. Doctoral Dissertation of Chengdu University of Technology,1-110] [24] 王昆山,石学法,林振宏. 2003. 南黄海和东海北部陆架重矿物组合分区及来源. 海洋科学进展, 21(1): 31-40. [Wang K S,Shi X F,Lin Z H.2003. Assemblages,provinces and provenances of heavy minerals on the shelf of the Southern Yellow Sea and Northern East China Sea. Advances in Marine Science, 21(1): 31-40] [25] 王伟,常秋生,赵延伟,张妮. 2016. 玛湖凹陷西斜坡百口泉组砂砾岩储层储集空间类型及演化特征. 地质学刊, 40(2): 228-233. [Wang W,Chang Q S,Zhao Y W,Zhang N.2016. Reservoir space types and evolution characteristics of the Baikouquan Formation glutenite reservoir on the western slope of the Mahu Sag. Journal of Geology, 40(2): 228-233] [26] 王学仁. 1982. 地质数据的多变量统计分析. 北京: 科学出版社. [Wang X R.1982. Multivariate Sstatistical Analysis of Geological Data. Beijing: Science Press] [27] 吴朝东,林畅松,申延平,冯雪. 2005. 库车坳陷侏罗系砂岩组分和重矿物组合特征及其源区属性. 自然科学进展, 15(3): 37-43. [Wu C D,Lin C S,Shen Y P,Feng X.2005. Composition and heavy mineral assemblage characteristics of Jurassic sandstones and their source regions in Kuche depression. Progress in Natural Science, 15(3): 37-43] [28] 武法东,陆永潮,阮小燕,周平. 1996. 重矿物聚类分析在物源分析及地层对比中的应用: 以东海陆架盆地西湖凹陷平湖地区为例. 现代地质, 10(3): 106-112. [Wu F D,Lu Y C,Ruan X Y,Zhou P.1996. Application of heavy minerals cluster analysis to study of clastic sources and stratigraphic correlation. Geoscience, 10(3): 106-112] [29] 徐田武,宋海强,况昊,王英明,陈莉琼,齐立新. 2009. 物源分析方法的综合运用: 以苏北盆地高邮凹陷泰一段地层为例. 地球学报, 31(1): 111-118. [Xu T W,Song H Q,Kuang H,Wang Y M,Chen L Q,Qi L X.2009. Synthetic application of the provenance analysis technique: A case study of member 1 of Taizhou Formation in Gaoyou Sag,Subei Basin. Acta Geoscientica Sinica, 31(1): 111-118] [30] 于兴河,瞿建华,谭程鹏,张磊,李晓路,高照普. 2014. 玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式. 新疆石油地质, 35(6): 619-627. [Yu X H,Qu J H,Tan C P,Zhang L,Li X L,Gao Z P.2014. Conglomerate lithofacies and origin models of fan deltas of Baikouquan Formation in Mahu sag,Junggar Basin. Xinjiang Petroleum Geology, 35(6): 619-627] [31] 余烨,张昌民,李少华,朱锐,杜家元,王莉. 2014. 多元统计分析在地质学中的应用: 以惠州凹陷M层物源分析为例. 地质科学, 49(3): 191-201. [Yu Y,Zhang C M,Li S H,Zhu R,Du J Y,Wang L.2014. Application of multivariate statistic analysis in geology: A case of provenance analysis in the M Strata,Huizhou Depression. Chinese Journal of Geology(Scientia Geologica Sinica), 49(3): 191-201] [32] 张华锋,叶青培,翟明国. 2005. 岩浆绿帘石特征及其地质意义研究进展. 地球科学进展, 20(4): 442-448. [Zhang H F,Ye Q P,Zhai M G.2015. Summary of characteristics and significance of the magmatic epidote. Advance in Earth Sciences, 20(4): 442-448] [33] 张顺存,蒋欢,张磊,李鹏,邹妞妞,鲁新川,史基安. 2014. 准噶尔盆地玛北地区三叠系百口泉组优质储层成因分析. 沉积学报, 36(6): 1171-1177. [Zhang S C,Jiang H,Zhang L,Li P,Zou N N,Lu X C,Shi J A.2014. Genetic analysis of the high quality reservoir of Triassic Baikouquan formation in Mabei region,Junggar Basin. Acta Sedimentologica Sinica, 36(6): 1171-1177] [34] 张有平. 2014. 百21井区夏子街组二段沉积物源方向及沉积相特征. 新疆石油地质, 35(2): 153-157. [Zhang Y P.2014. The characteristics of sedimentary provenance and facies of second member of Xiazijie Formation in Bai21 Well Block,Junggar Basin. Xinjiang Petroleum Geology, 35(2): 153-157] [35] 朱筱敏. 2008. 沉积岩石学. 北京: 石油工业出版社. [Zhu X M.2008. Sedimentary Petrology. Beijing: Petroleum Industry Press] [36] 邹慧娟,马昌前,王连训. 2011. 湘东北幕阜山含绿帘石花岗闪长岩岩浆的上升速率: 岩相学和矿物化学证据. 地质学报, 85(3): 366-378. [Zou H J,Ma C Q,Wang L X.2011. A magma ascent rate of epidote-bearing granodioritic magma in the Mufushan Complex Batholith of NE Hunan Province: Evidence from petrography and mineral chemistry. Acta Geologica Sinica, 85(3): 366-378] [37] 邹志文,李辉,徐洋,余朝丰,孟祥超. 2015. 准噶尔盆地玛湖凹陷下三叠统百口泉组扇三角洲沉积特征. 地质科技情报, 34(2): 20-26. [Zou Z W,Li H,Xu Y,Yu C F,Meng X C.2015. Sedimentary characteristics of the Baikouquan Formation,Lower Triassic in the Mahu Depression,Junggar Basin. Geological Science and Technology Information, 34(2): 20-26] [38] Andò S,Garzanti E,Padoan M,Limonta M.2012. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sedimentary Geology, 280: 165-178. [39] Coombs D S.1954. The nature and alteration of some Triassic sediments from Southland,New Zealand. Transactions of Royal Society of New Zealand,82(1): 65-109. [40] Enami M,Liou J G,Mattinson C G.2004. Epidote minerals in high P/T metamorphic terranes: Subduction Zone and High-to Ultrahigh-Pressure Metamorphism. Reviews in Mineralogy & Geochemistry, 56: 347-398. [41] Evans B W,Wagonerce J A.1987. Epidote phenocrysts in dacitic dikes,Boulder County,Colorado. Contributions to Mineralogy & Petrology, 96: 178-185. [42] Grapes R H,Hoskin P W O.2004. Epidote group minerals in low-medium pressure metamorphic terranes. Reviews in Mineralogy & Geochemistry, 56: 301-345. [43] Isaac M J.1977. Mesozoic geology of the MataWai district,Raukumara peninsula. Doctoral Dissertation of Geology University of Auckland, 1-410. [44] Milliken K L.2007. Provenance and diagenesis of heavy minerals,Cenozoic Units of the Northwestern Gulf of Mexico Sedimentary Basin. Developments in Sedimentology, 58: 247-261. [45] Morton A C.1984. Stability of detrital heavy minerals in tertiary sandstones from the North Sea Basin. Clay Minerals, 19: 287-308. [46] Morton A C,Hallsworth C.1994. Identifying provenance specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology, 90: 241-256. [47] Morton A C,Hallsworth C.1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124: 3-29. [48] Morton A C,Hallsworth C.2007. Stability of detrital heavy minerals during burial diagenesis. Developments in Sedimentology, 58: 215-245. [49] Pettijohn F J,Potter P E,Siever R.1987. Sand and Sandstone. Springer New York. [50] Schmidt M W,Poli S,Schmidt M W.2004. Magmatic epidote. Reviews in Mineralogy & Geochemistry, 56: 399-430. [51] Sigvaldason G E.1962. Epidote and related minerals in two deep geothermal drill holes,Reykjavik and Hveragerdi,Iceland. USGS Prof Paper,450E: E77-79. [52] Walderhaug O,Porten K W.2002. Stability of detrital heavy minerals on the Norwegian Continental Shelf as a function of depth and temperature. Geophysical Prospecting, 50: 661-664. |