[1] 陈敬安,万国江,陈振楼. 1999. 洱海沉积物化学元素与古气候演化. 地球化学, 28(6): 562-570[Chen J A,Wan G J,Chen Z L. 1999. Chemical elements in sediments of lake Erhai and palaeoclimate evolution. Geochimica, 28(6): 562-570] [2] 陈留勤. 2013. 河北兴隆中元古界大红峪组微生成因构造特征及其地质意义. 岩石矿物学杂志, 32(3): 366-372. [Chen L Q. 2013. Characteristics and geological significance of Microbially Induced Sedimentary Structures(MISS)in Mesoproterozoic Dahongyu Formation of Xinglong County,Hebei Province. Acta Petrologica et Mineralogica, 32(3): 366-372] [3] 程明. 2014. 重庆地区早三叠世错时相沉积类型及形成机理. 成都理工大学博士论文. [Cheng M. 2014. Types,Distributions and Origins of Early Triassic Anachronistic Facies in Chongqing Area. Doctoral Dissertation of Chengdu University of Technology] [4] 冯兴雷,付修根,谭富文,陈文彬. 2014. 羌塘盆地孔孔茶卡地区石炭系擦蒙组烃源岩沉积环境分析. 现代地质, 28(5): 953-961. [Feng X L,Fu X G,Tan F W,Chen W B. 2014. Sedimentary environment characteristics of Upper Carboniferous Cameng Formation in Kongkong Chaka area of northern Qiangtang Basin,Tibet. Geoscience, 28(5): 953-961] [5] 郭荣涛,郭丽娜,霍荣. 2012. 皱饰构造研究进展综述. 地质科技情报, 31(3): 16-30. [Guo R T,Guo L N,Huo R. 2012. Review on the wrinkle structure. Geological Science and Technology Information, 31(3): 16-30] [6] 胡俊杰,马寅生,王宗秀,柳永清,高万里,钱涛. 2017. 地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候. 古地理学报, 19(3): 480-490. [Hu J J,Ma Y S,Wang Z X,Liu Y Q,Gao WL,Qian T. 2017. Palaeoenvironment and palaeoclimate of the Middle to Late Jurassic Revealed by geochemical records in northern margin of Qaidam Basin. Journal of Palaeogeography(Chinese Edition), 19(3): 480-490] [7] 黄秀,张钊,周洪瑞,刘清俊. 2010. 豫西中元古代汝阳群微生物形成的沉积构造简介. 中国地质, 37(5): 1399-1404. [Huang X,Zhang Z,Zhou H R,Liu Q J. 2010. Microbial Induced Sedimentary Structures(MISS)of the Mesoproterozoic Ruyang Group in western Henan Province. Geology in China, 37(5): 1399-1404] [8] 刘兵,温泉波,刘永江,李伟民,冯志强,周建平,申亮. 2014. 大兴安岭中段上二叠统—下三叠统接触关系研究: 来自碎屑锆石年代学的证据. 大地构造与成矿学, 38(2): 408-420. [Liu B,Wen Q B,Liu Y J,Li W M,Feng Z Q,Zhou J P,Shen L. 2014. Contace relationship between the Upper Permian and Lower Triassic strata in the central Great Xing'an Ranges and its tectonic implication: Constraints from the setrital zircon U-Pb ages. Geotectonica et Metallogenia, 38(2): 408-420] [9] 李涛. 2011. 微生物席成因构造(MISS)组合及其古环境意义: 以豫西华北地台南缘中—上元古界为例. 中国地质大学(北京)博士论文. [Li T. 2011. Microbially Induced Sedimentary Structures(MISS)and their Paleoenvironmental Significance: An Example from the Meso-and Neoproterozoic of Southern North China Platform. Doctoral Dissertation of China University of Geosciences(Beijing)] [10] 罗根明,谢树成,刘邓,Algeo T J. 2014. 二叠纪—三叠纪之交重大地质突变期微生物对环境的作用. 中国科学: 地球科学, 44(6): 1193-1205. [Luo G M,Xie S C,Liu D,Algeo T J. 2014. Microbial influences on paleoenvironmental changes during the Permian-Triassic boundary crisis. Science in China: Earth Sciences, 44(6): 1193-1205] [11] 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 285-304. [Mei M X. 2014. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition), 16(3): 285-304] [12] 苗建宇,赵建设,刘池洋,朱亚军,王武龙. 2007. 鄂尔多斯盆地二叠系烃源岩地球化学特征与沉积环境的关系. 中国地质, 34(3): 430-435. [Miao J Y,Zhao J S,Liu C Y,Zhu Y J,Wang W L. 2007. Relationship between the geochemical characteristics and sedimentary environment of Permian hydrocarbon source rocks in the Ordos Basin. Geology in China, 34(3): 430-435] [13] 任纪舜. 1984. 印支运动及其在中国大地构造演化中的意义. 中国地质科学院院报, 9: 31-44. [Ren J S. 1984. The Indosinian Orogeny and its significance in the tectonic evolution of China. Bulletin of the Chinese Academy of Geological Sciences, 9: 31-44] [14] 沈树忠,朱茂炎,王向东,李国祥,曹长群,张华. 2010. 新元古代—寒武纪与二叠—三叠纪转折时期生物和地质事件及其环境背景之比较. 中国科学: 地球科学, 40(9): 1228-1240. [Shen S Z,Zhu M Y,Wang X D,Li G X,Cao C Q,Zhang H. 2010. A comparison of the biological,geological events and environmental backgrounds between the Neoproterozoic-Cambrian and Permian-Triassic transitions. Science in China:Earth Science, 40(9): 1228-1240. doi:10.1007/s11430-010-4092-y] [15] 沈文杰. 2007. 二叠—三叠纪界线事件的矿物学、地球化学解译: 以煤山剖面为例. 中国科学院广州地球化学研究所博士论文. [Shen W J. 2007. Mineral and Geochemical Explaination of Boundary Events: Evendence from Meishan Permian-Triassic Section. Doctoral Dissertation of Guangzhou Institute of Geochemistry,Chinese Academy of Sciences] [16] 史晓颖,蒋干清,张传恒,刘娟,高林志. 2008a. 华北地台中元古代串岭沟组页岩中的砂脉构造: 17×10 8 年前甲烷气逃逸的沉积标识?地球科学, 33(5): 577-590. [Shi X Y,Jiang G Q,Zhang C H,Liu J,Gao L Z. 2008a. Sand veins and Mircrobially Induced Sedimentary Structures from the black shale of the Mesoproterozoic Chuanlinggou Formation(ca. 1.7 Ga)in North China: Imlications for methane degassing from Microbial Mat. Earth Science, 33(5): 577-590] [17] 史晓颖,王新强,蒋干清,刘典波,高林志. 2008b. 贺兰山地区中元古代微生物席成因构造: 元古时期微生物群活动的沉积标志. 地质论评, 54(5): 577-586. [Shi X Y,Wang X Q,Jiang G Q,Liu D B,Gao L Z. 2008b. Pervasive Microbial Mat colonization on Mesoproterozoic Peritidal Siliciclastic substrates: An example from the Huangqikou Formation(ca 1.6 Ga)in Helan Mountains,NW China. Geological Review, 54(5): 577-586] [18] 童金南,殷鸿福. 2009. 早三叠世生物与环境研究进展. 古生物学报, 48(3): 497-508. [Tong J N,Yin H F. 2009. Advance in the study of Early Triassic life and environment. Acta Palaeontologica Sinica, 48(3): 497-508] [19] 田晓雪,雒昆利,谭见安,李日邦. 2005. 黑龙江嘉荫地区白垩系与古近系界线附近的古气候分析. 古地理学报, 7(3): 425-432. [Tian X X,Luo K L,Tan J A,Li R B. 2005. Analysis on palaeoclimateneighbouring the Cretaceous and Paleogene boundary in Jiayinarea,Heilongjiang Province. Journal of Palaeogeography(Chinese Edition), 7(3): 425-432] [20] 王惠勇. 2006. 豫西洛阳—伊川地区晚古生代、早中生代沉积体系与岩相古地理恢复. 山东科技大学博士论文. [Wang H Y. 2006. The Late Palaeozoic and Early Triassic Depositional System and Lithofacies Paleogeographic Recovery in Louyang-Yichuan in the West of Henan Province. Doctoral Dissertation of Shandong University of Science and Technology] [21] 熊小辉,肖加飞. 2011. 沉积环境的地球化学示踪. 地球与环境, 39(3): 405-414. [Xiong X H,Xiao J F. 2011. Geochemical indicators of sedimentary environments: A summary. Earth and Environment, 39(3): 405-414] [22] 邢智峰. 2010. 豫西中元古界云梦山组微生物成因沉积构造研究. 河南理工大学博士论文. [Xing Z F. 2010. Study on Microbially Induced Sedimentary Structures(MISS)from the Mesoproterozoic Yunmengshan Formation in Western Henan Province. Doctoral Dissertation of Henan Polytechnic University] [23] 邢智峰,齐永安,郑伟,袁余洋. 2011. 从微观角度认识微生物席在中元古代的繁盛: 以豫西云梦山组为例. 沉积学报, 29(5): 857-865. [Xing Z F,Qi Y A,Zheng W,Yuan Y Y. 2011. Microscopic characteristics of extensive Microbial Mats in Mesoproterozoic era: An example from the Yunmengshan Formation,western Henan. Acta Sedimentologica Sinica, 29(5): 857-865] [24] 杨文涛. 2009. 河南省三叠纪陆相沉积环境及演化规律. 河南理工大学博士论文. [Yang W T. 2009. The Continental Sedimentary Environment Analysis and Evolution of Triassic in Henan Province. Doctoral Dissertation of Henan Polytechnic University] [25] 殷鸿福,童金南. 1997. 地史转折期的生态系. 地学前缘, 4(3-4): 111-116. [Yin H F,Tong J N. 1997. Ecosystem at the turning point of geological history. Earth Science Frontiers, 4(3-4): 111-116] [26] 于水情. 2014. 河南宜阳下三叠统刘家沟组微生物成因沉积构造的古环境特征. 河南理工大学博士论文. [Yu S Q. 2014. Paleoenvironment Feature for Microbially Induced Sedimentary Structures from the Lower Triassic Liujiagou Formation on Yiyang County of Henan Province. Doctoral Dissertation of Henan Polytechnic University] [27] 于水情,邢智峰,周虎. 2015. 豫西下三叠统刘家沟组微生物成因沉积构造. 四川地质学报, 35(4): 483-486. [Yu S Q,Xing Z F,Zhou H. 2015. Microbially Induced Sedimentary Structure in the Lower Triassic Liujiagou Formation in west Henan. Acta Geologica Sichuan, 35(4): 483-486] [28] 曾艳,陈敬安,朱正杰,李键. 2011. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望. 地球科学进展, 26(8): 805-810. [Zeng Y,Chen J A,Zhu Z J,Li J. 2011. Advance and porspective of Rb/Sr ratios in lake sediments as an index of paleoclimate/paleoenvironmern. Advances in Earth Science, 26(8): 805-810] [29] 张利伟,杨文涛,牛永斌. 2014. 河南宜阳地区陆相二叠系—三叠系界线附近微生物成因沉积构造特征及意义. 地质论评, 60(5): 1051-1060. [Zhang L W,Yang W T,Niu Y B. 2014. Characteristics and geological significance of Microbially Induced Sedimentary Structures(MISS)in terrestrial P-T boundary in western Henan. Geological Review, 60(5): 1051-1060] [30] 赵英利,李伟民,温泉波,梁琛岳,冯志强,周建平,申亮. 2016. 内蒙古东部晚古生代构造格局: 来自中、晚二叠—早三叠世砂岩碎屑锆石U-Pb年代学的证据. 岩石学报, 32(9): 2807-2822. [Zhao Y L,Li W M,Wen Q B,Liang C Y,Feng Z Q,Zhou J P,Shen L. 2016. Late Paleozoic tectonic framework of eastern Inner Mongolia: Evidence from the detrital zircon U-Pb ages of the Mid-Late Permian to Early Triassic sandstones. Acta Petrologica Sinica, 32(9): 2807-2822] [31] 郑德顺,孟瑶,孙风波,王鹏晓. 2017. 伊川中元古界兵马沟组砂岩稀土元素地球化学特征. 河南理工大学学报(自然科学版), 36(1): 38-45. [Zheng D S, Meng Y, Sun F B, Wang P X. 2017. REE geochemical characteristics of sandstones of Mesoproterozoic Bingmagou Formation in Yichuan. Journal of Henan Polytechnic University (Natural Science), 36(1): 38-45] [32] 郑伟,邢智峰. 2015. 山西黎城中元古界常州沟组微生物成因构造(MISS)及其地质意义. 现代地质, 29(4): 825-832. [Zheng W,Xing Z F. 2015. Characteristics and geological significance of Microbially Induced Sedimentary Structures(MISS)in Changzhougou Formation of Mesoproterozoic in Licheng County,Shanxi Province. Geoscience, 29(4): 825-832] [33] 朱筱敏. 2008. 沉积岩石学(第四版). 北京: 石油工业出版社. [Zhu X M. 2008. Sedimentary Geology(Ⅳ Edition). Beijing: Petroleum Industry Press] [34] Bose S,Chafetz H S. 2009. Topographic control on distribution of modern Microbially Induced Sedimentary Structures(MISS): A case study from Texas coast. Sedimentary Geology, 213: 136-149. [35] Chu D L,Tong J N,Song H J,Benton M J,Bottjer D J,Song H Y,Tian L. 2015. Early Triassic wrinkle structures on land: Stressed environments and oases for life. Scientific Reports,| 5:e 10109. doi:10.1038/srep10109. [36] Dasch E J. 1969. Strontium isotopes in weathering profiles,deep-sea sediments,and sedimentary rocks. Geochimica et Cosmochimica Acta, 33(12): 1521-1552. [37] Getaneh W. 2002. Geochemistry provenance and tectonic setting of the Adigrat sandstone northern Ethiopia. Journal of African Earth Sciences, 35: 185-198. [38] Gerdes G,Klenke T,Noffke N. 2000. Microbial signatures in peritidal siliciclastic sediments: A catalogue. Sedimentology, 47: 279-308. [39] Hagadorn J W,Bottjer D J. 1997. Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology, 25: 1047-1050. [40] Porada H,Bouougri E H. 2007. Wrinkle structures: A critical review. Earth-Science Reviews, 81: 199-215. [41] Jones B,Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstone. Chemical. Geology., 111(1): 111-129. [42] Kalugin I,Daryin A,Smolyaninova L. 2007.800-yr-long records of annual air temperature and precipitation over southern Siberia inferred from Teletskoye Lake sediments. Quaternary Research, 67(3): 400-410. [43] Mata S A, Bottjer D J. 2009. The paleoenvironmental distribution of Phanerozoic wrinkle structure. Earth-Science Reviews, 96: 181-195 [44] Meng Y,Zheng D S,Li M L. 2017. Geochemistry evidence for depositional settings and provenance of Jurassic argillaceous rocks of Jiyuan Basin,North China. Journal of Earth System Science, 126: 14. [45] Noffke N. 2000. Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment(lower Arenigian,Montagne Noire,France). Sedimentary. Geology., 136: 207-215. [46] Noffke N. 2010. Geobiology: Microbial Mats in Sandy Deposits from the Archean Era to Today. Berlin: Springer,1-194. [47] Noffke N,Eriksson K A,Hazen R M,Simpson E L. 2006. A new window into Early Archean life: Microbial mats in Earth's oldest siliciclastic tidal deposits(3.2 Ga Moodies Group,South Africa). Geology, 34: 253-256. [48] Noffke N,Gerdes G,Klenke T. 1997. Biofilm impact on sedimentary structures in siliciclastic tidal flats. Courier Forschungsinstitut Senckenberg, 201: 297-305. [49] Noffke N,Gerdes G,Klenke T,Krumbein W E. 2001. Microbially induced sedimentary structures: A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71: 649-656. [50] Noffke N,Gerdes G,Klenke T. 2003. Benthic eyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems(siliciclastic,evaporitic salty,and evaporitic carbonatic). Earth-Science Reviews, 62: l63-176. [51] Peterffy O. 2016. Early Jurassic microbial mats: A potential response to reduced biotic activity in the aftermath of the end-Triassic mass extincti. Palaeogeography, Palaeoclimatology, Palaeoecology,464:76-85. [52] Pruss S,Fraiser M,Bottjer D J. 2004. Proliferation of Early Triassic wrinkle structures: Implications for environmental stress following the end-Permian mass extinction. Geology, 32: 461-464. [53] Riding R, Awramik S. 2000. Microbial Sediments. Heidelberg: Springer-Verlag, 1-331. [54] Rimmer S M. 2004. Geochemical palaeoredox indicators in Devonian-Mississippian black shales,central Appalachian Basin(USA). Chemical Geology, 206(3-4): 373-391. [55] Taj R J,Mahmoud A M,Aref B. 2014. Charlotte Schreiber: The influence of microbial mats on the formation of sand volcanoes and mounds in the Red Sea coastal plain,south Jeddah,Saudi Arabia. Sedimentary Geology, 311: 60-74. [56] Sarkar S, Choudhuri A, Mandal S, Eriksson P G. 2016. Microbial mat-related structures shared by both siliciclastic and carbonate formations. Journal of Palaeogeography, 5(3): 278-291. [57] Schieber J. 2004. Microbial Mats in the Silisiclastic Rock Record: A Summary of the Diagnostic Features. In: Eriksson P G,Ahermann W,Nelson D R, et al (eds). The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 12: 663-673. [58] Schieber J,Bose P K,Eriksson P G,Banerjee S,Sarkar S,Alterman W,Catuneanu O. 2007. Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record.In: Atlases in Geosciences. Amsterdam: Elsevier,1-311. [59] Scotese C R. 1994. Early Triassic Paleogeographic Map. In: Klein G D(ed). Pangea: Paleoclimate,Tectonics and Sedimentation During Accretion,Zenith and Breakup of a Supercontinent. Geological Society of America Special Paper, 288:7. [60] Shi X Y, Zhang C H, Jiang G Q, Liu J, Wang Y, Liu D B. 2008. Microbial mats in the Mesoproterozoic carbonates of the North China platform and their potential for hydrocarbon generation. Geoscience, 22(5): 669-682. [61] Tang D J,Shi X Y,Jiang G Q. 2014. Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites. Precambrian Research, 248: 1-16. [62] Tribovillard N,Algeo T W,Lyons T,Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232: 12-32. [63] Tu C Y,Chen Z Q,Gregory J. Retallack,Huang Y G,Fang Y H. 2016. Proliferation of MISS-related microbial mats following the end-Permian mass extinction in terrestrial ecosystems: Evidence from the Lower Triassic of the Yiyang area,Henan Province,North China. Sedimentary Geology, 333: 50-69. [64] Wang Z W,Fu X G,Feng X L,Song C Y,Wang D,Chen W B,Zeng S Q. 2015. Geochemical features of the black shales from the Wuyu Basin,southern Tibet: Implications for palaeoenvironment and palaeoclimate. Geological Journal,doi:10.1002/gj. 2756. [65] Wilmeth D T,Dornbos S,Isbell J L,Czaja A D. 2014. Putative domal microbial structures in fluvial siliciclastic facies of the Mesoproterozoic(1.09 Ga)Copper Harbor Conglomerate,Upper Peninsula of Michigan,USA. Geobiology, 12: 99-108. [66] Yang J H,Jiang S Y,Ling H F,Feng H Z,Chen Y Q,Chen J H. 2004. Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province,South China. Progress in Natural Science, 14: 152-157. |